

<u>eRHIC – the future?</u>

Steve Peggs

- The EIC Accelerator Workshop, Feb 2002
- Ultimate performance
- Storage ring issues
- Interaction region issues

The Facility Requirements

- Collider geometry capable of e- A and polarized e- p Collisions
- Range of $s^{1/2}$ for e- A as high as possible: (~ 63 GeV/u)
- Range of variable s^{1/2} for e- p: 30 100 GeV
 Ü (Beam Energy)Max: (Ee)10 GeV, (Ep) 250 GeV, (EA) 100 GeV/u
- Ep/Ee, EA/Ee: preferably independent of s^{1/2} for detector geometry?
- Range of Ion Species: As wide as possible, p to U?
- Polarization: $70\% \times 70\%$
- Luminosity: 10^{33} cm⁻²s⁻¹ per nucleon
- Integrated Luminosity for Significant Physics:

For inclusive physics (Yale workshop): ~2 fb- 1
For exclusive and semi- inclusive: ~5 1> times more

e⁺p, in addition to e⁻p, requirement?
 To be addressed by Electron Ion Collider Workshop

White paper EIC options

Decision: **DON'T DO THIS!**

- Collisions only at one interaction region (IP12?)
- e- ring outside of RHIC tunnel with ¼ of RHIC circumference
- e- ring built to support polarization build- up or circulator ring for full energy (energy recovering) linac
- Existing RHIC IPs fully negotiable for electron- ion collisions

5 – 10 GeV electron ring (Y. Shatunov)

- Spin rotators: solenoid + weak horizontal bend
- Short self polarizing time using "super bends"

Ring- ring parameter (Y. Shatunov)

(4)	Units	Electron ring	Proton ring
Circumferences	m	958.25	3833
Energy	GeV	5-10	25-200
Arc radius	m	97.98	610
Bending radius	m	63.59	243
Number of bunches		90	360_
Bunch spacing	m	10.65	10.65
Bunch population		$1 \cdot 10^{11}$	$1\cdot 10^{11}$
Beam currents	\boldsymbol{A}	0.45	0.45
Harmonic number		1170	2520
RF frequency	MHz	365.7	196.9
Accelerating voltage	MV	30	1.5
Energy losses/turn	MeV	2.83-21.26	
Total radiated power	MW	1.27-9.57	
Beam emittances, $\varepsilon_{x,z}$	$\mu m \cdot mrad$	43–65	48–6
Beta function at IP	cm	10	10
Beam size at IP, $\sigma_{x,z}^*$	μm	65–80	68-24
Momentum spread	-	$1.0 - 1.6 \cdot 10^{-3}$	$1.1 - 0.4 \cdot 10^{-3}$
Bunch length, σ_l	cm	1–2	10–5
Beam-beam parameter, ξ		0.046-0.023	0.009-0.002
Lasslett tune shift, Δv			0.2 - 0.009
Luminosity	$cm^{-2}s^{-1}$		$0.45 - 1 \cdot 10^{33}$

All EIC options require e- cooling of ions

Electron cooling of high energy proton or ion beams:

- Feasibility supported by study produced at BINP
- Bunched electron beam requirements for 100 GeV/u gold beams:
 E = 54 MeV, <I> ≤ 100 mA, electron beam power: ≤ 5 MW!
- Requires high brightness, high power, energy recovering superconducting linac, almost identical to IR FEL at TJNAF
- First linac based, bunched electron beam cooling system used at a collider
- First high p_t electron cooler to avoid recombination of e⁻ and Au⁷⁹⁺

New ideas (Y. Derbenev):

- Use circulator ring for e- cooling of very intense ion beams
- Cooling is improved if cooling decrements are equal in all 3 dimensions
- E- cooling can produce flat beams and very short ion bunches which can improve collider luminosities

ULTIMATE PERFORMANCE

Beam-beam parameters (round beams):

$$\xi_e = \frac{N_i}{\epsilon_e} \left(\frac{r_e Z}{4\pi \gamma_e} \right) \tag{1}$$

$$\xi_i = \frac{N_e}{\epsilon_i} \left(\frac{r_i(v/c)_i}{4\pi Z} \right) \tag{2}$$

Emittance subscripts are correct! For example, e-cooling reduces ϵ_i and allows N_e to be reduced.

Electron-ion luminosity can be written

$$L = F_c \xi_e \xi_i \sigma_e^{\prime *} \sigma_i^{\prime *} \left(\frac{4\pi \gamma_e \gamma_i}{r_e r_i} \right)$$
 (3)

- When beam-beam limits and angular apertures have been met, $\xi_e \xi_i \sigma_e^{\prime *} \sigma_i^{\prime *}$ is fixed.
- Then the only way to increase the luminosity is to increase the collision frequency F_c (more bunches)
- Linac-ring collisions allow the usual $\xi_e \approx 0.06$ limit to be violated.

ION STORAGE RING ISSUES

Long range beam-beam. Early beam separation is easy with very unequal rigidities. EPIC:

Electron cloud. Ionized electrons are accelerated by the next ion bunches, possibly with runaway, threatening cryogenic heat load, instabilities.

• A paucity of data from superconducting rings (Tev, HERA, RHIC, LHC). More work required ...

Intra-Beam Scattering, electron cooling. RHIC expects the gold rms emittance to grow from 2 μ m to 7 μ m in 10 hours. With electron cooling it should shrink to about 1 μ m in 1 hour.

ELECTRON STORAGE RING ISSUES

Synchrotron radiation. The total synchrotron power is

$$P[MW] = 0.0885 \frac{E^4 [GeV^4]}{\rho [m]} I[A]$$
 (4)

- The SLAC HER serves as a natural "ruler" to compare prospective electron rings. (See Table).
- Must limit synchrotron radiation load to less than 15 kW/m.

Polarization. The natural polarization time

$$T_{\text{pol}}[s] = 15.8 \frac{C\rho^2[m^3]}{E_e^5[\text{GeV}^5]}$$
 (5)

• Acceleration through intrinsic spin resonances probably impossible ($E = J \ 0.441 \ [\text{GeV}]$).

INTERACTION REGION ISSUES

The IR geometry is FULLY negotiable

eRHIC IR with "weak – strong" bends (B. Parker)

- "Three beam" IR
- E- beam collides head on with blue at IP
- Small vertical deflection inside detecto separates electrons from circulating beams
- Ions bent by 1T field inside a Lambertson dipole
- Long drift downstream of Lambertson gives spectrometer lever arm
- Keep Lambertson short to pass synchrotron radiation.
- Small vertical kicks to Blue/Yellow beams compensate before triplets – proton spin should be OK

PEP-II IR Schematic

M. Sullivan

PEP-II IR with HEB SR Fans

IR SM₂Co₁₇ Magnets

Q1 magnet & rings

Q1a ring

B1 magnet in measurement

IR Vacuum Chambers

IR support Tube Assy

U. Wienands, SLAC-PEP-II EICAW IR talk ppt, 26-Feb-02

Lost-Particle Backgrounds

Coulomb scattering in Arcs (distant)

Be beam pipe at the center of BABAR

Mode at Forward Mask

N. Folwell, C. Ng

SUMMARY

- 1. There is a growing consensus that BNL is the right place to build EIC, also known as eRHIC.
- 2. The largest feature would be an electron storage ring, perhaps 1/4 of the RHIC circumference (~ 1 km).
- 3. This ring could first operate as a storage ring, and later be upgraded to a "1,000" turn recirculator
- 4. What is the electron injector? Multi-pass SCL? Upgradable?
- 5. The IR has a host of challenging problems, familiar to B-factories (SLAC, KEK, Cornell) and to HERA.
- 6. How do we collaborate from here?